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I/O Requirements for FAIR

New concept:

• No hardware trigger

Flexible Event Selector:

• Compute farm calculates “trigger”, ca. 60 000 cores only for
CBM first level event selector

I/O:

• ≈ 1 TByte/sec for Compressed Baryonic Matter (short CBM)

• ≈ 1/2 TByte/sec for Anti-Proton Annihilation at Darmstadt
(short PANDA)

• additional “smaller” Experiments



I/O Requirements for FAIR (cont.)
I/O after first level event selector:

• 1 GByte/sec for CBM
• 1 GByte/sec for PANDA
• additional “smaller” Experiments

In summary: Massive amount of data needs to be processed and
stored.



Lustre Overview

• Lustre is a parallel
distributed network file
system for the domain of
HPC

• 70% of the TOP500
supercomputers run
Lustre

• POSIX compliant

• Lustre is free software
(GPL v2)

Client1

Client2

b

b

b

ClientK

OSS1

OSS2

b

b

b

OSSM

OST1 OST2

b b b

OSTN1

OST1 OST2

b b b

OSTN2

OST1 OST2

b b b

OSTNM

MDS1
(active)

MDT1

MDS2
(failover)

MDT2

/lustre

Lustre Architecture &

Components Overview



Lustre Deployment at GSI

Current:

• 7000 Disks.

• Raw capacity: 6.2 PByte

• Clients to OSS’s: 1.5 TBit/sec I/O.

• OSS’s to OSS’s: 2.4 TBit/sec I/O.

Exploring and Testing:

• Lustre 2.5 with ZFS back-end file system (software RAID).

• Multiple meta-data (MDT) servers (parallelize meta-data
performance).

• Modeling and predicting file system “behavior” with
probabilistic graphical models.



Highspeed Connections to Partnered Institutes

Current:

• 12 × 10 GBit/sec Ethernet
with LNET/Lustre.

• Full bandwidth saturation.

Long term goal:
• LU-2221 ptlrpc: kerberos support for kernel >=

2.6.24

• LU-2392 kerberos: GSS keyring is broken >=
2.6.29

• LU-2384 kerberos: Support for MIT-kerberos
>= 1.8.X is broken

• . . .



On Big Data
Kryder’s Law:

The density of hard drives increases by a factor of 1 000
every 10.5 years (doubling every 13 months).

source: http://en.wikipedia.org/wiki/Mark_Kryder

If hard drives continue to pro-
gress at their current pace,
then in 2020 a two-disk 2.5-in
disk drive can store approxima-
tely 40 Tera-Bytes and would
cost about $40.

How about algorithms, are
they also scale in such a man-
ner, e.g. multiplying big matri-
ces?

http://en.wikipedia.org/wiki/Mark_Kryder
http://www.dssc.ece.cmu.edu/research/pdfs/After_Hard_Drives.pdf


On Big Data and Matrix Multiplication
void mult_naive(double A[dim][dim], double B[dim][dim], double C[dim][dim], unsigned int dim)
{

for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {

double sum = 0;
for (int k = 0; k < dim; k++) {

sum += A[i][k] * B[k][j];
}
C[i][j] = sum;

}
}

}

Run-time complexities big O notation for matrix multiplication
algorithms:

Naive example : O(dim3)

Strassen(1969) : O(dim2.8074)

Coppersmith–Winograd(1990) : O(dim2.375477)

Francois Le Gall(2014) : O(dim2.3728639)

Consider large matrices, e.g. 105 × 105. How do we efficiently
multiply those?



Matrix Multiplication in Neural Networks
Consider the problem of learning (deep) neural networks, which
can be perfectly formulated in terms of matrix multiplications.
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Matrix Multiplication in Neural Networks (cont.)

• Activation of neuron:
a
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1 ), where f (·)

is some activation function, e.g. f (z) = 1/(1 + exp(−z)).

• Forward-Pass (matrix multiplication, vector addition,
element-wise activation function):

y = f (. . . f (W(3)f (W(2)f (W(1)X + b(1)) + b(2)) + b(3)) . . .)

• Backward-Pass for updating the parameters (weights) can also
be formulated in terms of matrix multiplications.

• Forward-Pass + Backward-Pass ≡ Back-Propagation
Algorithm.



Matrix Multiplication in Neural Networks (cont.)

• Training big and deep neural networks, e.g. 60 million
parameters and 650 000 neurons and massive amount of data
was infeasible 10 years ago.

• It took months to train big and deep neural networks,
moreover one concluded that such neural networks are very
prone to overfitting and the gradient vanishing problem.

• Since the revolution of powerful and cheap GPU’s (and proper
SDK), big and deep neural networks can be trained in a
couple of hours or days.

• State of the art in computer vision (convolution neural
network), speech recognition, natural language processing,
etc..

• See work of: Geoffrey Hinton, Yann LeCun, Yoshua Bengio,
Andrew Ng, and many more.



Summary

• When Kryder’s Law still holds in the future, then we will be
surrounded by massive amount of data.

• Highly optimized task specific GPU algorithms on very
powerful GPU can enable to crunch this data.

• Algorithms processing and analyzing the data, ideally scale as
well (online and parallized algorithms).


