
Storing and Analyzing Efficiently Big Data at
GSI/FAIR

Thomas Stibor

GSI Helmholtz Centre for Heavy Ion Research, HPC

8. Mai 2014

Overview GSI/FAIR

UNILAC

SIS100/300

RESR/
CR

HESR

SIS18

Rare Isotope
Production Target

Antiproton
Production Target

p-LINAC

PANDA

NESR

FLAIR

CBM

Super-FRS

Plasma Physics

Atomic Physics

existing facility

planned facility

experiments

I/O Requirements for FAIR

New concept:

• No hardware trigger

Flexible Event Selector:

• Compute farm calculates “trigger”, ca. 60 000 cores only for
CBM first level event selector

I/O:

• ≈ 1 TByte/sec for Compressed Baryonic Matter (short CBM)

• ≈ 1/2 TByte/sec for Anti-Proton Annihilation at Darmstadt
(short PANDA)

• additional “smaller” Experiments

I/O Requirements for FAIR (cont.)
I/O after first level event selector:

• 1 GByte/sec for CBM
• 1 GByte/sec for PANDA
• additional “smaller” Experiments

In summary: Massive amount of data needs to be processed and
stored.

Lustre Overview

• Lustre is a parallel
distributed network file
system for the domain of
HPC

• 70% of the TOP500
supercomputers run
Lustre

• POSIX compliant

• Lustre is free software
(GPL v2)

Client1

Client2

b

b

b

ClientK

OSS1

OSS2

b

b

b

OSSM

OST1 OST2

b b b

OSTN1

OST1 OST2

b b b

OSTN2

OST1 OST2

b b b

OSTNM

MDS1
(active)

MDT1

MDS2
(failover)

MDT2

/lustre

Lustre Architecture &

Components Overview

Lustre Deployment at GSI

Current:

• 7000 Disks.

• Raw capacity: 6.2 PByte

• Clients to OSS’s: 1.5 TBit/sec I/O.

• OSS’s to OSS’s: 2.4 TBit/sec I/O.

Exploring and Testing:

• Lustre 2.5 with ZFS back-end file system (software RAID).

• Multiple meta-data (MDT) servers (parallelize meta-data
performance).

• Modeling and predicting file system “behavior” with
probabilistic graphical models.

Highspeed Connections to Partnered Institutes

Current:

• 12 × 10 GBit/sec Ethernet
with LNET/Lustre.

• Full bandwidth saturation.

Long term goal:
• LU-2221 ptlrpc: kerberos support for kernel >=

2.6.24

• LU-2392 kerberos: GSS keyring is broken >=
2.6.29

• LU-2384 kerberos: Support for MIT-kerberos
>= 1.8.X is broken

• . . .

On Big Data
Kryder’s Law:

The density of hard drives increases by a factor of 1 000
every 10.5 years (doubling every 13 months).

source: http://en.wikipedia.org/wiki/Mark_Kryder

If hard drives continue to pro-
gress at their current pace,
then in 2020 a two-disk 2.5-in
disk drive can store approxima-
tely 40 Tera-Bytes and would
cost about $40.

How about algorithms, are
they also scale in such a man-
ner, e.g. multiplying big matri-
ces?

http://en.wikipedia.org/wiki/Mark_Kryder
http://www.dssc.ece.cmu.edu/research/pdfs/After_Hard_Drives.pdf

On Big Data and Matrix Multiplication
void mult_naive(double A[dim][dim], double B[dim][dim], double C[dim][dim], unsigned int dim)
{

for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {

double sum = 0;
for (int k = 0; k < dim; k++) {

sum += A[i][k] * B[k][j];
}
C[i][j] = sum;

}
}

}

Run-time complexities big O notation for matrix multiplication
algorithms:

Naive example : O(dim3)

Strassen(1969) : O(dim2.8074)

Coppersmith–Winograd(1990) : O(dim2.375477)

Francois Le Gall(2014) : O(dim2.3728639)

Consider large matrices, e.g. 105 × 105. How do we efficiently
multiply those?

Matrix Multiplication in Neural Networks
Consider the problem of learning (deep) neural networks, which
can be perfectly formulated in terms of matrix multiplications.

x1 x2 xD

a
(1)
1 a

(1)
2 a

(1)
N1

a
(2)
1 a

(2)
2 a

(2)
N2

y1 y2

W(1), b(1)

W(2), b(2)

W(3), b(3)

parameters to learn

Matrix Multiplication in Neural Networks (cont.)

• Activation of neuron:
a
(1)
1 = f (W

(1)
1,1x1 + W

(1)
1,2x2 + . . . + W

(1)
1,D

xD + b
(1)
1), where f (·)

is some activation function, e.g. f (z) = 1/(1 + exp(−z)).

• Forward-Pass (matrix multiplication, vector addition,
element-wise activation function):

y = f (. . . f (W(3)f (W(2)f (W(1)X + b(1)) + b(2)) + b(3)) . . .)

• Backward-Pass for updating the parameters (weights) can also
be formulated in terms of matrix multiplications.

• Forward-Pass + Backward-Pass ≡ Back-Propagation
Algorithm.

Matrix Multiplication in Neural Networks (cont.)

• Training big and deep neural networks, e.g. 60 million
parameters and 650 000 neurons and massive amount of data
was infeasible 10 years ago.

• It took months to train big and deep neural networks,
moreover one concluded that such neural networks are very
prone to overfitting and the gradient vanishing problem.

• Since the revolution of powerful and cheap GPU’s (and proper
SDK), big and deep neural networks can be trained in a
couple of hours or days.

• State of the art in computer vision (convolution neural
network), speech recognition, natural language processing,
etc..

• See work of: Geoffrey Hinton, Yann LeCun, Yoshua Bengio,
Andrew Ng, and many more.

Summary

• When Kryder’s Law still holds in the future, then we will be
surrounded by massive amount of data.

• Highly optimized task specific GPU algorithms on very
powerful GPU can enable to crunch this data.

• Algorithms processing and analyzing the data, ideally scale as
well (online and parallized algorithms).

